
Intro to Recursive 
Structures & Processes



Let’s code the Node class together in VS Code!

Create a new file named cl/linked_list.py

As a reminder, we want our Node class definition to have: 

● Attributes: 
○ value: int

○ next: Node | None

● Initializer/constructor with parameters:
○ self

○ val: int

○ next: Node | None

“or”



What happens when you try to print a string representation of 
a Node object?

<__main__.Node object 
at 0x100633950>

print(one) What does this print?

What does the 0x100633950 mean?!

If we had the power to write our own string 
representation of a Node object, what 
might we want print(one) to print?



What about the to_str function (from Monday’s LS assignment)?

What does the function do? 

Why is it useful?

Is it recursive? How do we know?

Surely, there must be a better way…
Perhaps with some… ✨magic✨?

… but would this function change the 
output of print(one)?



A Recursive last Algorithm Demo

1. When you are asked, 
"Are you the last Node?"

If you’re not: 

2. Ask the next Node, 
"Are you the last Node?"

Wait patiently for an answer!

3. Once the answer is returned back to 
you, turn to the person who asked you 
and give them this answer.

If it is: 

2. Tell them, “yes!” and share your value.

1

2

3

None

Value of the 
last Node?

Are you the last 
Node?

Are you the last 
Node?

Are you the last 
Node?

Yes! My 
value is 3!

It’s 3!

It's 3!



Let’s write the last function in VS Code! 



Recursive function checklist: 

Base case: 

❏ Does the function have a clear base case?
❏ Ensure the base case returns a result directly (without calling the function again).

❏ Will the base case always be reached?

Recursive case:

❏ Does the function have a recursive case that progresses toward the base case?
❏ Does the recursive call have the right arguments? The function should call itself on a simpler or smaller version of 

the problem.

❏ Have you tested your function with multiple cases, including edge cases?


